Lean  $LEAN_TAG$
PortfolioOptimizerPythonWrapper.cs
1 /*
2  * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
3  * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
4  *
5  * Licensed under the Apache License, Version 2.0 (the "License");
6  * you may not use this file except in compliance with the License.
7  * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
8  *
9  * Unless required by applicable law or agreed to in writing, software
10  * distributed under the License is distributed on an "AS IS" BASIS,
11  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12  * See the License for the specific language governing permissions and
13  * limitations under the License.
14  *
15 */
16 
17 using Python.Runtime;
18 using QuantConnect.Python;
19 
21 {
22  /// <summary>
23  /// Python wrapper for custom portfolio optimizer
24  /// </summary>
26  {
27  /// <summary>
28  /// Creates a new instance
29  /// </summary>
30  /// <param name="portfolioOptimizer">The python model to wrapp</param>
31  public PortfolioOptimizerPythonWrapper(PyObject portfolioOptimizer)
32  : base(portfolioOptimizer)
33  {
34  }
35 
36  /// <summary>
37  /// Perform portfolio optimization for a provided matrix of historical returns and an array of expected returns
38  /// </summary>
39  /// <param name="historicalReturns">Matrix of annualized historical returns where each column represents a security and each row returns for the given date/time (size: K x N).</param>
40  /// <param name="expectedReturns">Array of double with the portfolio annualized expected returns (size: K x 1).</param>
41  /// <param name="covariance">Multi-dimensional array of double with the portfolio covariance of annualized returns (size: K x K).</param>
42  /// <returns>Array of double with the portfolio weights (size: K x 1)</returns>
43  public double[] Optimize(double[,] historicalReturns, double[] expectedReturns = null, double[,] covariance = null)
44  {
45  return InvokeMethod<double[]>(nameof(Optimize), historicalReturns, expectedReturns, covariance);
46  }
47  }
48 }